機能性セラミックスの探索は年々多元系へと進み、多成分・多水準のなかで高機能材を見出す傾向にあります。これを短期間で達成するには、合成・計測・解析ハイスループット技術と機械学習を組み合わせたインフォマティクスの構築が不可欠になっています。我々は無機材料の粉体や膜の試料群の作製および評価を高速・高効率化した装置・治具の開発し、リチウムイオン二次電池正極材や熱電変換材料などのエネルギー材料や環境材料の新物質探索を進めています。そして「現在・未来」のニーズに沿った開発を進めながら、実験プロセス条件や物性をデータセットとした新素材予測のためのインフォマティクス研究の構築を進めています。
我々の技術の根底には固相合成技術のみならずゾル-ゲル法、静電噴霧堆積法、共沈法などの液相合成技術、ソフト化学プロセス、そしてフラックス法による単結晶育成技術といった各種合成手法と、X線回折による構造解析、そして電池材および固体酸化物型燃料電池材を構成するイオン導電体、熱電変換材、光触媒および排ガス浄化触媒、ガスセンサー、蛍光体、形状記憶合金に対する従来型評価技術があります。
全て(既存・新規)のノウハウを駆使し新素材探索を進めます。

Exploration of functional ceramics has been shifting to multinary systems year by year, and there is a tendency to find high-functional materials among multicomponents and multiple experimental parameters. To achieve the exploration of new materials in a short period of time, it is becoming essential to establish informatics that combines high-throughput synthesis, measurement, and analysis technologies with machine learning. We have developed equipment and tools for rapid and efficient preparation and evaluation of powder and film samples of inorganic materials, and are exploring new materials for energy and environmental materials, such as cathode materials for lithium-ion secondary batteries and thermoelectric conversion materials. And while developing systems in response to “present and future” needs, we are constructing informatics research for the prediction of new materials using experimental process conditions and physical properties as a data set.
Our technology is based on not only solid-state reaction process, but also various synthesis techniques such as sol-gel, electrostatic spray deposition, coprecipitation, soft chemical processes, and single crystal growth by flux method, structural analysis by X-ray diffraction, and conventional evaluation techniques for ionic conductors, thermoelectric conversion materials, photocatalysts, exhaust gas purification catalysts, gas sensors, phosphors, shape memory alloys, and others.
We are utilizing all of our know-how in our exploration of new materials.